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THEORY OF THE MOTION OF A BODY WITH CAVITIES

PARTLY FILLED WITH A LIQUID*

By D. E. Okhotsimskii

N. E. Zhukovskii [1] has given a detailed investigation of the problem

of the motion of a rigid body containing cavities completely filled by a liquid.

He showed that in the case of simply connected cavities the whole system can

be replaced by a certain equivalent rigid body whose mass is equal to the mass

of the system and which has a certain specified moment of inertia. This

moment of inertia was calculated for a number of cavities of various shapes.

When the cavities are partially filled, there exists no equilvalent rigid

body, although in certain special kinds of motion (where the force is applied

by an impulse or in harmonic motion) it is possible to introduce inertial char-

aeteristics of the system analogous to the mass and moment of inertia, and to

use these to set up the equations of motion and to analyze the behavior of the

system under the action of external forces.

We give here the results of such an investigation for special kinds of

cavities in the form of a ch-cular cylinder and in the fo:m of two concentric

cylinders. The velocity potential is found. It is shown that there exist three

independent inertial characteristics, and a method is given for calculating

them. The concept of the center of inertia of the system is introduced, and a

theorem analogous to Steiner's (parallel axis) theorem is proved. A method

is given for setting up the equations of motion. An analysis and a physical

explanation is given for the dependence of the inertial characteristics on the

shape of tlle cavity and on the type of motion.

This article was written in 1950._Since then, the following additious

have been made: a cavity consisting of two concentric cylinders is treated,

and a more complete investigation of tile inertial characteristics is undertaken.

1. The determination of the velocity potential within the cavity between

two circular cylindcrs. Consider a container, whose shape is that of the cavity

between two concentric circular cylinders, filled with a massive ideal incom-

pressible liquid (Fig. 1). Let 1__ be the depth of the liquid, a the radius of the

external cylinder, and ka the radius of the internal cylinder (0__ k < 1). Let tile

origin of the coordinate system be at the center of the free surface. Let the x

*Translated from Prikladnaia Matematika i Mekhanika, vol. 20,

no. i, Jan.-Feb. 1956, pp. 3-20.

**The paper was presented at the mechanics seminar of the

Mathematical Institute, Academy of Sciences USSR, November 14, 1950.



and y axes lie in the horizontal plane and the z a);is be directed vertically upward.

We shall restrict our treatment to linear considerations, and shall investigate

the motion of the liquid which occurs if the conta_ficr is subjected to motion in

the vicinity of its initial position. This motion may, in particular, reduce to

small oscillations about a stationary axis. In order to solve the problem of the

general motion of the container, it is sufficient to bc able to find the motion of

the liquid if, for instance, the body undergoes rotation about the x axis and trans-

lation along the _g axis.

We shall consider the xyz coordinate system te remain stationary. We shall

call the motion in this stationary coordinate systeH absolute motion. We shall

assume, further, that the absolute motion of the liquid is irrotational. If the

motion started from rest, this follows from the ordinarily assumed absence of

friction and characteristics of mass forces.

/

Y
Fig. 1

Let ¢ be the absolute velocity

potential. The condition of incompressi-

bility gi v ".s

A_= 0. (1.1)

The boundary conditions on the

external and internal walls of the con-

where vrt, vrt and v z are the velocity components o

face in the direction of the normal to the initial pc

tainer are

and at the bottom they are

f points o,l tile boundary sur-

sition of the surface.

Throughout the whole liquid, we have the integral

P--Pro _ (1.4)
_llmt

¢ Ot - gz

where p is the liquid density, 13 is the pressure, Po s the pressure on the free

surface, and g is the intensity of the mass force act ng along the negative z axis.

In particular, this may bc the acceleration of gravity. Equation (1.4) gives tile

condition

on the free surface where g(x,y) is the equation of 7he free surface.
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The quantity _ may be considered the displacement along the z axis of a

particle which initially lies in the z = 0 plane. We shall attempt to find the

potential in the form of the sum of two potentials

?_-- _ + ._. (1.6)

Let us consider the same cavity bounded at the top by a plane surface whose

distance from the free surface is equal to the depth of the liqaid, and let us

assume that this eavity is completely filled by liquid. We shall consider 9g to

be the absolute velocity potential for this case. In the lower part of the cavity

this velocity potential will satisfy the above conditions at the walls and at the

bottom, but will not. in general satisfy the condition at z = O. We shall choose

Cz such that it vanish at the walls and at the bottom, and such that its sum with

¢1 satisfy the condition at z = O.

This potential el gives the wave motion that would take place in the liquid

if the container were to remain stationary and the liquid were acted upon by the

nonuniformities in the pressure on the z = 0 plane that are due to the motion

with the potential _'l.

Like Zhukovskii [1]. we shall attempt to find 91 in the form

_l = _(F -- Vz)+ roy ( 1. _)

where B is the angular velocity of rotation of the container about the x axis, and

vt is the velocity of the center of the free surface as it moves together with the

container in the y direction.

The function F(x,y,z) must satisfy Laplace's equation •

i

'2

I--

OtF I OF I _F O'-F
A F = or_. + T -_-r + 7 -_- + y_-z. = O (1.8)

(r = V x-' + v-', _ = arc tg _ ) (t.8)

with the boundary conditions

OF (1.9)=0 for r a r=kal
_r

at the external and internal walls, and

_F (1.10)
O--Z=27/ for := + h

at the top and bottom of the container.

We wish to find a solution in the form

Fig. 2.
of a linear combination of terms such as

F = Z (z) !I (v,) R (r) ( 1.11 )

* In this paper 'tg" =- 'taW, 'th" -_ "tanh', 'sh' -- 'sinh', 'ch' - 'cosh' - Publisher.



Separating variables.we obtain the following equations:

d* H d'l, . , d ,.: . ( )
m'- R_Z ),tZ = O, + m*H : O, -- = 0_,, _ --_i- + --i- -_; + M 7i-

where k t >0 . From the condition that Z(z) is an even function we have

(1.12)

Z(:)= sh(_z) (1.13)

Also

H(_)=sin(m_+ e), R(r) mJm (_r)+;Nm (hr) (1.14)

Became H (t#) is periodic, the number m must be integral. The cuantities • and y are constants, and lm

and N m are 8euel functiom of the first and second kind of order m . 7o determine the function F we take m = 1,

and • = 0. The constants k and ), are determined from the houri'duty conditions at the walls of the container.

We use the notation

i(_)= J,'(O
N,' (4) (1.15)

where the primes denote differentiation with respect to {. We seek the roots of the equation

/ (t;)= / (/_) (1.zs)

The function f(_) is shown in Fig. 2(k = 1). Also shownisf(k£_ fork = 0.1.k = 0.2 andk=0.3. When

k = 0 the curve runs along the abscissa axis. Eq. (1.16) has an infinite lumber of roots En" The corresponding

values for y n are

In the table

_,,_ -- 1 (_;.) (z.z_)

are shown the values of the roots [n and the quantities Yn and n = 1 - 4 and k = 0.0.1, 0.2.

0.3.

k=0

_n

1.84t2
5.331
8.5:_

If .71
14.86

"ftl

0

6el

1 .';18
-- 2. _$9

3.l;59
--4.781;

4A-31

bet

0

t=0.4

k = 0,2

k----0.3

1. V,036
5. 137
8.199

11.36
14.63

1.7053
4.962
8.633

12.16

t.582
5.l._
9.307

13.69

--0.02562
--0. 1902
--0. 346O
---0..%58 I
--0.2:U;6

--0.000.38
--0. 3728
-_). 1023
+0.48-ii

--0.16G5
---O.1893

+0.954¢
--2._:,0

I. 7 _)'l

3 2_9
--3._76

4._q4

1._57
--2.611

3.617
--3.9_2

1.5 )3
--2.7"_6

2.7,;3
1.8+5

--0.04362
0.5298

--1.1725
1.4239

--1.1035

--0. ! 498
0.9734

-0.37[_
--1.90_8

--0.2652
0.5273
2.6387

--4.2650

The functions Rn which correspond to the roots of Eq. (1.16) may be conveniently

by setting their values at r = a equal to unity. We obtain

dtt

0.418_
0.03648
0.01391
0.0073.1
0.00446

0.4126
0.04251
0.01117
0.01024
0.00_$2

0.3995
0.05837
O.t_91G
0.011_

o. 3&99
0.0727
0.o0718
O.4)1 IGO

normalized, for example,



,.I÷)=o.Jl(,.+)+ +)
t

an = Jl (_n) + YaNI (_.) ' b. = an7.

In the special case k = 0, we have yn = 0 and

lla JI (s. /a)
Ja (7"n)

Values of a n and b n are given in the Table.

(1.18)

(1.19)

F
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Figures 3, 4 and 5 show graphs of R n for n = 1,2 and 3 and for k = O, 0.1, 0.2

and 0.3. We see that functions corresponding to a given _n and various _k do not

differ greatly, the only differences between the n occurring essentially in the

first half wave from the center.

Let us write F in the form

Vl=l

(1.20)

The coefficients C n can be chosen from the boundary conditions (1.10) at the

upper and lower surfaces. Expanding y in a series of R n functions, we have

(+) '-'"-'"y = 2a sirl "q dnR n dn= (_'-- t)--(k_*-- ljRnt(k ) • {1.21)
llml

In the special case k = 0, we have

da-_ | a_n" d L Jnl_nr/a) (1.22)r_,--i' y=2asin-q 1 J, tL,) "

The d n are given in the Table.

Using the boundary condition, we arrive at

m_td_ sb(_s 'a) __F= 4atsin_

t° R, L [_,"'--

(1.23)

//

Fig. 3

where f(t) is a function of time.

motion which arises in tile plane motion of the container, one may choose ll(r/)

Let us now find the potential ¢t

for the wave motion. This is a harmonic

function satisfying the condition

0 tpt/Or = 0 at the walls and 0¢2//_z = 0

at the bottom.

We shall attempt to find a solution

in the form _,f the sum

+it _--- if (l) Z (z) H ('tl) R (r) ( 1.2 4 )

It is clear that in investigating forced wave
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Fig. 5.

and R(r) of the same form as their

choice in F,

Figures 3,4 and 5 show the form of

Fig. 4L the waves for the first three harmonics•

As for the _z dependence, we satisfy the

condition at the bottom by setting

z(,)= <h(_), (1•_.5)
For the purpose of simplifying the equations for the time dependent functions.

let us write Cs in the form

?l = 2aisin_ _.(t) d,,_. (_-) (1.26).., <h(_.÷)

F
5
5

where the Xr,(t) are undetermined functions of the t*.me• The dot denotes dif-

ferentiation with respect to time, We may rewrite the condition at the surface

In the form

-- +gl_ 4gl (l.2'z)
OI z,o _, Ot *=0

where _l and {;s arc the displacements due to motto1 with the potentials q_i and

9s, so that t t

092o.I,
o 0

We calculate the left and right sides of (1,27) _nd equate coefficients,

obtaining the following equations for the Xn(t):

ro C (1 2

The final expression for the absolute velocity p>tential of the liquid will be

?'=2aisin'q-",[T_ Z,,+ _ _ _+ d.R.

We note that solutions of the form of (1,9-4) can be used to construct potentials,

combinationi of which can represent arbitrary wave irlotion of the liquid in the
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container of the given shape. These potentials are of the form

• sin z+h . r (m == 0.,. 2 .... )."=F(t)cos(ra_)ch(_"_)B" ("-_-) xn = 1,2.3 ....

Here

In the above, the gnm

m
and the _, n

J. _.'r 14) + "r.',V m (L.'r It)
Rn "t

J,,, (_,") + -r,,,= N,,, ((,,'1

are roots of the equation

d,_" (O J.,," (k_)

N." (0 = IV." (Ig)

mare the ratios of the derivatives when g = _n -

(1.30)

(1.31)

(1.32)

In the case we are considering, that of plane motion of the container, all

the potentials except those which enter into the expression for _t satisfy a homo-

geneous equation of the form

_-th - F=O (1.33)

in time, and correspond to free vibrations of tile liquid. If any one of these is

added to _ it will alter neither the boundary conditions nor the conditions on

the free surface.

If the liquid started from rest, the free-vibration potentials vanish identically.

We then also have

Z" = _,t=O for t _ 0
(1.,34)

These conditions will be the initial conditions for Equations (1.28).

2. Reactions at the walls. Effective moments of inertia and effective masses.

In rotation about a stationary axis and in translational motion, the inertia

of an absolutely rigid body is characterized by the moment of inertia I and the

mass m . The "'resistance'" of a body to these two types of motion is given by

- IB'. - ,,,_" (2 1)

where J_ and _ are the angular and linear accelerations.

One of the most important results obtained by N. E. Zhukovskii [1] is that if

a body contains simply connected cavities completely filled by a liquid, it can

be replaced by an equivalent rigid body. Under the influence of external forces

the original body and the equivalent rigid body will move in exactly the same

way. The "'resistance" of such a system will therefore be given by Equations (2.1).

where I will be the moment of inertia of the equivalent rigid body. The mass of

the equivalent body is found to be the same as the mass of the original s)stem.

For motion of a body whose cavities are only partly filled by a liquid, the

situation is different. The pressure at any point of the liquid is given by
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P-- po = -- p(_-_ _ -_I _ plz (2.2)

The right side of this equation contains, in addition to the hydrostatic term,

the quantities i)_l/i)t and @ipI/i) t. Tire first of these is proportional to _, but

the second is in general not proportional to this quarltity.

Thus when there is a free surface it is impossible to introduce an equivalent

rigid body. The inertia of such a system to rotation about a stationary axis and

to translational motion cannot, in general, be reduced to quantities analogous to

moment of inertia and mass which are independent both of time and of the type

of motion.

lqevertheless, even if there is a free surface, there exist certain definite

special cases of motion in which the reaction of the liquid on the walls is pro-

portional to the acceleration of the container. It is then possible to introduce

external Inertial characteristics of the system, such as effective moments of

inertia and effective masses, which do not depend on the time, but which exist,

unfortunately, only for the given special type of motion.

We shall here consider two such special cases, namely the beginning of motion

from a state of rest and steady state harmonic vibrations of the container.

We shall calculate the resultant force and the moment of the pressure forces

exerted by the liquid on the walls of the container when the container rotates

about the x axis and when it translates in the y direction. The formulas we obtain

can be used to calculate the forces and moments for general space motion.

We shall calculate the forces, moments, and ine tial characteristics for the

case k = 0, which is the most interesting case of a e_ntainer in the shape of a

circular cylinder. The formulas we have obtained above for the velocity potential

can be used to perform a similar calculation for an)" case in which k _ 0. Many

of the conclusions reached in the case of a cylindric iI cavity are valid also for

the more general case.

Let us consider that the hydrostatic pressure forces, which occur when the

cylinder rotates about the x axis, are acting at the origin. For the resultant

we have Qx = Qy = 0, Qz = - rag, and for the resultart moment L) = L z = 0; the

third component L x of the moment can be calculated directly, but it is simpler

to proceed differently.

In our case the pressure forces on the container will be equal and opposite to

the pressure forces on the container upon immersion in the liquid.

F

3
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For a circular cylinder immersed vertically, however, it is known that there

exists a metacenter at a distance

_ar II I

d---- T---- 4-K

above the center of the cylinder, where I x ; l/4_ra4 is the moment of inertia of

the cross sectional area about the x axis, V = _a2h is the volume of the displaced

liquid, and _h Is the depth to which the cylinder is immersed°

From this it follows that the moment of the hydrostatic forces about the x

axis is

°,.)1,==--rng 7 4h _ (2.a)

Rotating about a horizontal axis a distance L below the x axis, we have

Going on to a container in motion, it is convenient to consider Qz and L x

as external. We shall consider only the first term on the right side of (2.2) in

calculating the inertial characteristics. This term gives the additional pressure

which arises when the container is in motion. The components of the resultant

and of the moment will be

P,= P,=0, _II_=M,= 0.

The other components, Py and M x are given by

o

-..._ • o o

In the equation for Py the integral is taken over the side walls of the original

cylinder. In the equation for M x the first integral is taken over the side walls,

and the second over the bottom of the original cylinder.

By analogy with the case of a solidified liquid, we may write for rotation

about the x axis

I "

P, = -- m, -i- h_, Mx = -- Io_ (2.7)

where mo and I 0 have the dimensions of mass and moment of inertia, respectively.

For motion of an)' arbitrary type these quantities will, in general, be variable.

In our case we have

( _1 ' Jl(_nrla)sh{_llla)_ (2.8)
,= _(F -- zy) F = 4at sin 7i ........

Cm(_.nS--l) Jj(_,)ch(_ h/a) /.
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Further,

at -- 2a2 si" _ ([ = 1) jn(¢.) el, (_h/a j
=i

(2.9)

where the Xn (t) satisfy the equations

g 2;"+'+','_,,=T ('-_,_.)_+ (2.1o)
The quantities m 0 and Io are then given by

m°=m(l--_ " .._=L¢_ i_ j -_- _-r.- th Ix-

lo = ma" + -- 1-- +14o ,_ -- e. I--
] .., 1_ _ (2.12)

where m__ is the mass of the liquid and we have written

hO= h !
• _.lt = _lt h , I_lt =

a _' (_,J -- I_

and where X'n is found by solving (2.10).

In arriving at Equations (2.11) and (2.12), we used the formula

J* " -'d- r-dr == a _ _ .,.

and the fact that the numbers {n satisfy the relatio, s

-,_-- , , ,
= T ' _=(¢.:- if = T

which ate easily derived.

Let us now consider special cases. If the liquid were to solidify, we would

have

s h,_) ",no=.,, l.=ma'(_-+T (2.13)

Thus the first terms of (2.11) and (2.12) are tho;e for a solidified liquid.

If the motion is just beginning or if the force is applied by a sudden impulse.

Equation (2.10) and the initial conditions give _" = ) and only the first two terms

in the equations for m 0 and I0. We then have

mo = m I-- j-_ 1--8 = ct_ tt

'(' ( "+'"')1I.=ma' IT+ -- 1--_ _-
--a "" " (2.15)

Finally, in the case of simple harmonic motion Equation (2.10) gives

I !

F
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We introduce the dimensionless parameter a given by

* •tj _.
2 = -- (2.16)

g

This parameter gives the ratio of the square of tile forced vibration frequency

to the square of the oscillation frequency of a pendulum of tength a. We have

_r, th _n -- at

Inserting this into (2.11) and (2.12) and

we obtain

!, = ma_ --_- + ¢_-- +
st J|

performing the necessary operations.

(ttt. I -- _ (2.17)
_n th Fn_ x

i_" ¢,,th _,,,-- • _ J- (2.18)

Let us now calculate the forces and moments for translation in the y direction.

Let us write them in the form

We have

k - (2.19)
M., = -- m z _- T.

___tat_--_Y • (2.20)

The derivative 0_2/0t is given by (2.9), and the

equations

Z.+G_Nt'X.= -- _--- .

Inserting (2.19) into (2.5) and (2.6) we arrive at

u--| T

..=-{,
t:i Y

where Xn is obtained from a solution of (2.21).

Xn must satisfy the

(2.21)

(2.22)

(2.23)

= m.

have

Let us now consider special cases. For a solidified liquid we have mt= m t =

If motion is just beginning and if the forces are applied impulsively, we

m n =m{|- _ _ tn]_.tl!p.} (2.24)

ttJl

For stead}" state harn:onic n_otion we have

Zt_ • at



2.2

The formulas for m I and m z then become

mt = rn ltl + h k_aC_th_,,--a'"l

A comparison of the formulas obtained shows that the inertial characteristics

for the start of motion can be obtained from the corresponding quantities for

harmonic oscillations of the container and by going to the limit a "-_ OOo The

parameter a is the Frud*number for our problem. We see that the limit a _ m

is obtained when _a _ (x), when a _ m, or when g --_ 0. If g = 0, this means that

the motion takes place in the absence of mass force_. When impulsive forces act

on the container, finite mass forcesmay be neglected, and the motion takes place

as though it were true that g = O.

Comparing (2.14) and (2.1"/) with (2.25) and (2.2"/), we see that for all values

of a, including the limit _ --_ _, we have identically

ml = too- (2.28)

This means that in the cases we are considering, in which there exis_

time-independent inertial characteristics, there are not four, but three independent

characteristics. These are the effective moment of inertia I 0 and the effective

masses m 0 and m 1.

3. Center of inertia. Steiner's theorem. The (quations of motion of the

system with a liquid filling. Let us consider the molion of the container about

an axis mn passing through the cylindrical axis and parallel to the x axis (Fig. 1).

Let B be the angular displacement, and y the displatement of the origin in the

._ direction. According to Equations (2.7) and (2.19) Py and M x are given by

•- : hme_ 'P_ = _m:_---;* (3.1)

- hrn°'[ -- Jr°_" (3.2)

We have set m z = m0, since we shall assume either that motion is just

beginning or that it is harmonic. Let L be the distar, ce from the x axis to the

axis mn (Fig. 1). We then have

p, = (m,L--',,m.)
Let us choose the position of the axis of rotation so that the resultant of the

pressure forces vanish, the set of these forces rcducirg to a couple.

Setting Py = 0 in (3.3), we find that the distancf from the x axis to the axis

• Transliteration of Russiai:- PablishL'r's note.
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of rotation must be

k m o
Lc= 2- m--'_"" (3.4)

Let us call the point at which this position of tile mn axis intersects the

cylindrical axis the center of inertia of tile liquid in the cylindrical container.

According to (3.2), (3.3) and (3.4) the moment of the pressure forces which

is obtained when the system rotates about an axis passing through the center of

Inertia is

•_c = -Ic_, I, = 1,-=,_-. (3.5)

The quantity I c is the effective moment of inertia which is obtained in

rotation about a horizontal axis passing through the center of inertia.

If a couple perpendicular to the cylindrical axis tending to rotate the cylinder

about a horizontal axis is applied to the container, the container will rotate

about an axis passing through the center of inertia. We thus see that as refers to

the application of a horizontal couple, the center of inertia plays a role analogous

to the center of gravity of a rigid body.

Let us now consider translational motion along the v axis. According to

(2.19), the force and moment are

Pu "ffi-- m,_, M. -/- mo'_ (3.6)

Let us write (3.6) in terms of the center of inertia. We then obtain the

moment

Mxc'= --tl_m*_--PtLc" (3.'0

Inserting the value of Lc from (3.4). we arrive at M x = 0.

We thus see that when the container translates along a horizontal axis, the

system of pressure force reduces to a horizontal force parallel to the axis of

translation and passing through the center of inertia. This result means that if

a horizontal force is applied to the container such that its line of action crosses

the cylindrical axis at the center of inertia, the container will translate horizontally

in the direction of the applied force similarly as would occur if a force were

applied at the center of gravity of a rigid body.

Let us now consider a container to which is applied a set of forces parallel

to the yz plane. Let us apply this set of forces to tt:e center of inertia. Let R

and N be the resultant and the moment of these forces, respectively. It follows

from the above that under the action of Ry and R z the container will undergo

translation, and that under the action of the moment it will rotate about a
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horizontal axis passing through the center of inertia. If we write out the ex-

pressions which state that the liquid pressure forces on the walls are equal and

opposite to the external forces, we obtain the following equations describing

the motion of the center of inertia and the motion about the center of inertia:

,e,. zc =N (3.8 

where 6 is the vertical displacement of the containe_ in the z direction. From

the external point of view, these equations are entirely analogous to similar ones

for the motion of the center of gravity and the motion about the center of gravity

of a rigid body.

The essential difference is that the inertia of the system is different for

motion along the y and z directions (m I is not in general equal to m__). In

addition, the inertial characteristics and the position of the center of inertia

will remain constant during the motion only for a certain class of motion, and

they will be different for different motions within this class. Equations (3.8) can

be used in treating the beginning of motion, impulsive forces, and steady state

harmonic vibrations.

Let us write the expression for the moment of inertia in rotation about an

arbitrary horizontal axis passing through the cylindrit al axis. We have

1 "=--pl..
The force and the moment about the x axis will be

I /tlllo_, I "i,, = ¥ ,e. = -/of. (3.9)
The moment about the axis of rotation will be

,;IL = Mx -- i'lL.

Inserting the values of M x and Py, we obtain

AlL = -- !._ (IL = lo -- mJd. + mL _)

where I L is the effective moment of inertia for rotati_n about an axis at a dis-

tance L from the x axis.

Let I be the distance from the axis of rotation t( the center of inertia, so

that

L'=Lcq-I.

Inserting this into the equation for I L, and makln_ use of (3.5), we obtain

IL = ! c "JFml_ (3.10)

Now (3.10) is analogous to the well known theorela of Steiner for the moment

of inertia for a rigid body, and is a generalization of this theorem to the case of

a liquid in a container. The second of (3.5) is a special case of this formula.
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If m I > O. then the moment of inertia I L is minimal, as in the ease of a

solid body with I = O, or about an axis passing through the center of inertia.

For the case of impulsive forces. I c and m I are always positive. For harmonic

vibrations, there may be values of a for which m t < 0. For these cases the

opposite situation occurs, that is I L is a maximum for an axis passing through

the center of inertia.

Let us now write out a formula for calculating the forces, moments and

inertial characteristics under the coordinate transformation x' = x. y' = y,

z" = z + L.

The expression for the force and moment for both displacement and rotation

can be written e

DIe _ -- ms]' -- Thme _' Mj, ---- t ,--, ,-._-hm. T --/. _ (3.11)

where y' is the displacement with respect to the new origin O', and

2L (3.12)
m." --- m. -- T ms, 1.' _ I. -- m.hL + mtLs .

The effective mass m I is not changed by a shift of the origin along the _z

axis. The effective mass m# vanishes if the origin coincides with the center of

inertia.

Together with the formulas for calculating ms, ml, I0, Equations (3.11) and

(3.12) can be used, for instance, to calculate the effective moments of inertia

with respect to a transverse axis and the effective masses for a system containing

several cylindrical cavities partially filled with liquid and lying along a single

axis. It should be noted that for such systems it is also possible to define a center

of inertia with similar properties. If a set of external forces is applied at this

point, the inertial characteristic m e of the whole system will vanish, and the set

of equations breaks up into independent equations which describe independently

the motion of the center of inertia and the motion about the center of inertia.

In this case the set of equations will be of the form of (3.8).

As for the case of space motion, if the weight is distributed with rotational

symmetry, the set of equations for space motion in our case of small oscillations

can be subdivided into two independent pairs of equations describing rotation and

lateral motion for two axes perpendicular to tl:e axis of symmetry, and equations

for the translational motion along the symmetry axis and rotational motion about

it. These two last equations are indcpcndet_t of each other and independent of the

other equations of the system. The equation for motion along the symmetry axis

will be the same as that for a system witl: a solidified liquid, and the equation
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of motion abong the axis will be identical with the equation in the absence of

liquid filling.

In the general case of arbitrary motion, the concept of inertial characteristics

of a system with liquid filling becomes meaningless, and the first two pairs of

equations are conveniently written in a somewhat different form in which they

ire treated, for instat_ee, as the equations of motion of the solid part of the

system with the pressure forces the liquid applies to the walls handled as external

forces.

It is possible to add to the inertial characteristics of the solid part of the

system that part of the inertial characteristics of the liquid which is independent

of the wave motion, that is, independent of the Xn- The terms containing these

functions are then written out separately and treated as external forces.

A convenient form of the equations of motion is one in which the inertia of

the system is treated as the sum of the inertial characteristics of the rigid part

of the system and the solidified liquid, added to that part due to rotation and

wave motion. In this case, if the center of application of the forces is treated

as the center of gravity of the system with the solidified liquid, the prlncipal

terms are written in the same way as for a rigid body. and the equations obtained

are coupled only because of the mobility of the liquid. These principal terms

will always appear separately and can always be evalaated. The additional terms

of the equations are obtained from the last terms of the initial characteristics

which depend on the Xn-

In order to complete each of two pairs of equatic_ns describing the _ motion

in two perpendicular planes passing through the axis ,,f symmetry (the momentum

equation and the angular momentum equation), it is r ecessary to add to each of

them an infinite set of Equations (1.28) which gives t_e relation between the

wave motion parameters in each of the cylindrical cavities, if there are several

of them, and the parameters of motion of the rigid part of the system.

In this case, the quantity y entering into the right side of these equations is

understood not as the displacement of the center of a_plication of the system, but

as the displacement of the center of the free surface for each of the cavities.

4. Investigation of the inertial characteristics. In the motion of a container

of liquid, m t and 10 are of fundamental significance. The effective mass m t plays

the role of the mass in lateral translation. The effective moment of inertia deter-

mines the inertia to rotation about the ce_ater of the free surface. The characteristic

F
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m 0 does not have such clear physical meaning, and serves to determine the center

of inertia.

Let us first consider tile start of motion (impulsive forces).

Figure 6 gives the dependence of the quanties

on the relative height h ° of the container.

When h" = 0, we see that mt = 0.

As h" increases, so does m 1. approaching unity asymptotically.

This can be explained in the following way. The difference between m z and

m is due to the fact that under a lateral force the liquid is not carried along b)

the container as a whole, lagging somewhat so that the liquid level drops some-

what on the forward wall and rises somewhat on the back one. For a small value

4

0 i _ _ h

__[ -o

10 ] Fig. 7.

of h" the walls hardly constrain the
Fig. 6.

liquid to move and it falls behind

strongly. Then the effective mass will be much less than the mass of the liquid.

When the depth is great, on the other hand, the walls provide a strong constraint

to the liquid motion and as the container is moved the liquid moves almost as a

whole.

The lagging of the liquid, which takes place close to the free surface, leads

ollly to very small displacements with respect to the container in the deeper

layers of the liquid, since, as is known, the intensity of agitation drops very

rapidly with depth.

Therefore for large values of h* the effective mass m I will hardly differ from

the mass of the liquid.

Let us now discuss the manner in which the position of the center of inertia,

as given by (3._), depends on h'.
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Figure 7 gives a graph of the ratio m0/m I. We see that as h" "_ 0, this ratio

approaches --a>. It can be shown, however, that l/lh'me/m I remains finite and

approaches a negative limit. This means that the center of inertia approaches a

limiting position above the center of the free surface.

As h" increases, so does the ratio me/rot, and in the limit h" -'_co this ratio

approaches unity from above. This means that as h" increases the center of

Inertia drops, crosses the free surface, and drops bel,+w the center of the container.

The distance from the center of inertia to the c,:nter of the container as

given by (3.4) is

z _, l " (4.1)

A graph of d/a is shown In Fig. 7. We see that as h" -'_m the distance between

the center of inertia and the center of the container approaches a limit equal to

,limd == a r_ (_-- I) _ 0.23,1 (4.2)
-|

which means that in the limit the center of inertia l_es somewhat less than a

quarter of the radius below the center of the contain,:r. This ratio converges on

Its limit rather slowly. When h" = V, we have d = 0.27a.
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In order to discuss the role of rotation and wave motion, we have given in

Fig. 8 the dependence on h" of the ratio between the effective moment of inertia

and the moment of inertia 1T of the solidified liquid, for a container with a

cover on the free surface and one without it rotating tbout its center, and for a

container with a free surface rotating about thc center of inertia of the liquid.

We see that because of the rotation of the liquid the moment of inertia

decreases very significantly for certain heights of the container in the case of a

covered surface (by a factor of about 6 when h" = 1.6_ 1.8). We see also that if

g
3
3
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Fig. 9.

there is a free surface, the moment of inertia is further decreased. The influence

of the free surface however, is relatively weak. the rotation of the liquid playing

the most important role. This is explained by the fact that in the case we are

considering the axis of rotation is located within the cylinder. When the axis

of rotation is moved further away. the influence of the free surface increases,

and in the limit it becomes just as important as it is in translational motion.

The lower curve in Fig. 8 is for rotation about the center of inertia of the

liquid in the container. At h" _ 2 the two lower curves are tangent (the center

of inertia coincides with the center of the container). Since mt • 0, the moment

of inertia is minimum about the center of inertia. A .ignificant difference

between the moment of inertia with respect to the center of the container occurs

only for small values of h', when the center of inertia lies relatively far from

the center of the container (Fig. 7).

Let us now consider the case of steady state harmonic vibrations. Figure 9

shows how the inertial characteristics mr', me', I0" depend on ct for h" = 2. For

a = 0, we have m t" = 1, which means that the effective mass mt is equal to the

mass of the liquid. This is clear, since the frequency of external vibrations is

much less than the natural, and the liquid will therefore be displaced together

with the container as a single unit. As cc increases, the mass m t increases, be-

coming unbounded as the frequency of the first harmonic is approached. After

the resonance m t is first negative, then passes through zero and becomes positive.

The unbounded increase of the effective mass close to resonance is convenient

to think of not as the unbounded increase of the amplitude of vibration in the
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container, but as an indication that liquid vibrations will take place under very

small amplitudes of vibration of the container. At tte resonant frequency the

container need not be displaced at all. This is understandable, as it is tile fre-

quency of vibration of the liquid in the stationary co_ltainer.

Resonance will occur for all of the natural frequencie_ of vibration given by

" =Vi.
-_ ___ -.._ As a -_ _, the mass m I approaches

- a limit equal_a its value for impulsive

- - forces, and the width of the interval

about the natural frequency where m 1

::.-_.-.._,--_.-./,-,.//z differs from its limiting value by more

Fig. 10. than a given quantity approaches zero.

The limit for m 1" is 0.767.

The effective mass is proportional to the negativ,', of the horizontal projection

of the resultant pressure force applied by the liquid ol the wall of the container,

or the external force which must be applied to the co,trainer in order to obtain

oscillations with the given frequency. When the effective mass vanishes, this

means that at the given frequency the container can oscillate without the appli-

cation of horizontal external forces. These frequenci _s to n' form in infinite series.

and are the roots of equations which we obtain when he set m z = 0 in Equation

(2.26). The frequency ton' is the frequency of free vi )rations of the liquid

together with a weightless container for a container wlieh undergoes translation

(Fig. 10). In all cases _o n' > ton, and ton' _ ton as n -_ co.

The positive or negative signs on the effective m Lss m I indicate that in order

to maintain oscillations at a given frequency the fore,_ applied to the liquid must

be directed parallel to the acceleration or antiparallel to it. In other words, the

force and acceleration must have the same or opposite phases.

Oscillations of a liquid with a negative mass m I are obtained, for instanc(:,

when we consider the natural vibrations of a liquid to_cther with a massive con-

tainer. We have M ÷ m I = 0 where M is the mass of the container. From this

we have

ml = --M_o.

The natural frequencies are obtained from Equation (2.26) by setting m I = - M.

The roots _o n" of this equation satisfy the physically obvious condition

F

5
5



21

We mention also the physical meaning of allowing the center of inertia to

go to infinity. This occurs at frequencies for which m I = 0, or when the force

necessary to maintain oscillations of the container vanishes. The necessary

moment in this case, however, does not vanish. This moment is produced by the

constraints which cause the cylinder to translate.

The graphs of Fig. 9 show that the moment of inertia I0 and the moment of

inertia for rotation about an arbitrary horizontal axis depend similarly on a.

The physical meaning of a vanishing, positive, or negative moment of inertia is

the same as that for the effective mass m 1. There is some difference due to the

moment of the hydrostatic forces. When the moment of inertia vanishes, for

instance, the corresponding frequency is therefore not equal to the frequency of

oscillation of the liquid together with a weightless container, but takes on this

value only if the axis of rotation passes through the center of inertia, and if the

moment of the hydrostatic forces vanishes.

The above investigation shows that the presence of a free surface may in

many cases lead to measurable differences in the inertial characteristics of bodies

with liquid-filled cavities.
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